International Field Years on Lake Erie

NOAA's Great Lakes Environmental Research
Laboratory (GLERL) in collaboration with researchers
from the U.S. and Canada have initiated one of the
largest, most comprehensive Lake Erie research
field programs ever conducted. The project, the
International Field Years on Lake Erie (IFYLE),
began in May 2005, with a focus on hypoxia
and harmful algal blooms.

chers the (IFYLE)

Introduction

Water quality and ecosystem health issues persist within the Great Lakes and are of concern to the user community, managers, and researchers. These include, but are not limited to, harmful algal blooms (HABs), reduced oxygen availability (hypoxia/anoxia), and exotic species, all of which have the potential to negatively influence food web dynamics, native biodiversity, and biological production (e.g., fisheries yield).

One of NOAA's long-term goals is to provide enhanced ecosystem forecasts to predict patterns of biological, physical, and chemical variables in response to natural and human-induced changes to the system (e.g., extreme natural events, climate change, land and resource use, pollution, invasive species, fisheries impacts), across a variety of spatial and temporal scales. These forecasts will benefit coastal communities, including the Great Lakes, by providing the foundation for (1) improved decision-making for resource stewardship, (2) mitigation of potentially hazardous human activities, (3) reduced impacts of natural hazards, (4) enhanced communication between scientists and managers, and (5) more effective prioritization of science.

A Focus on Lake Erie

The Lake Erie ecosystem faces wide and varied threats to its health and integrity, including harmful algal blooms (HABs) in the west basin, recurring low oxygen episodes ("dead zones") in the central basin, and invasive species. Each of these threats has the potential to disrupt normal food web and ecosystem processes, and in turn, jeopardize the ability of Lake Erie to provide valued ecosystem services (e.g., recreational and commercial fish production, safe drinking water, and clean, bacteria-free beaches).

Four attributes make Lake Erie ideal for piloting the development of an ecosystem-forecasting framework. First, although Lake Erie is large, it is small relative to coastal marine systems and the other Great Lakes, so cost-effective,

field sampling can be performed to test hypotheses over the entire Lake. Second, a wealth of historical monitoring and research data has been compiled for this system, which can be used immediately for model parameterization/calibration, validation, and ecological scenario testing. Third, several predictive physical models exist for Lake Erie (e.g., watershed-hydrology and hydrodynamics models). Finally, a large research and policy infrastructure (e.g., Lake Erie Millennium Network, Lake Erie Lakewide Management Plan, and Lake Erie Committee) already exists, which will facilitate NOAA's effort to develop truly integrative, multidisciplinary programs aimed at conducting the needed research for ecosystem forecasting.

What are IFYLE's Key Goals?

The science priorities are based upon years of planning by NOAA GLERL and Great Lakes scientists throughout the region. The general goals of this research are to examine the causes and consequences of low-oxygen events and harmful algal bloom formations (HABs) in Lake Erie. The ultimate application of this research is to increase our understanding of anoxia and HABs, which can then be used to develop forecast tools that can aid decision-making processes. More specifically, IFYLE program goals are to:

- 1. Quantify the spatial extent of hypoxia across the lake, and gather information that can help forecast its timing, duration, and extent;
- 2. Assess the ecological consequences of hypoxia to the Lake Erie food web, including phytoplankton, bacteria, microzooplankton, mesozooplankton, and fish;
- Identify factors that control the timing, extent, and duration of HAB (including toxin) formation in Lake Erie, as well as enhance our ability to use remote sensing as a tool to rapidly map HAB distributions in the lake.

When and Where was the Research Conducted?

During 2005, IFYLE program field sampling occurred from May to September, using a number of research vessels and more than a dozen observational buoys. In total, more than 130 days of ship time and approximately 2100 people days were logged. Sampling focused on physical processes and the entire food web, from microbes and phytoplankton on up to the highest fish predators. All of 2006

will be devoted to sample processing, data analysis, testing and refining hypotheses, and building models that can be used for both understanding and forecasting purposes. During 2007, we expect to conduct another intensive field season, with more focused sampling objectives.

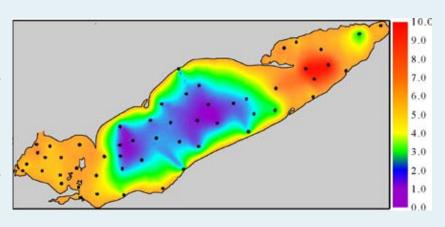
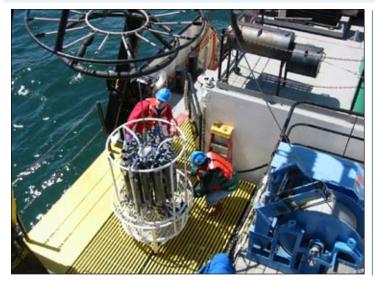



Figure 1. Preliminary estimation of dissolved oxygen concentrations (mg/l) in Lake Erie during September 7-11, 2005. Sampling stations are denoted with black dots. Note the large area of bottom hypoxia (i.e., dissolved oxygen levels < 4 mg/l) in the central basin, which can be stressful to fish. The thickness of this low-oxygen layer ranged from 1 to 7 m above the lake bottom (surface waters had sufficient oxygen).

Who is Involved?

The IFYLE program has become the largest international, multidisciplinary research effort of its kind in Lake Erie's history, involving approximately 40 scientists from NOAA, 17 different universities, and private institutions spread across 7 states and 4 countries. This program is integrative, given involvement by numerous US and Canadian universities and federal, state, and provincial agencies, and serves as an example of how NOAA and other federal agencies are fulfilling the Presidential Executive Order (#13340) to execute the Great Lakes Regional Collaboration among agencies. Vessel support came primarily from NOAA Ship Support, US EPA-Great Lakes National Program Office, and NOAA-GLERL, whereas funds for external researchers were provided by the National Sea Grant College Program and the Ohio, Pennsylvania, and New York Sea Grant College programs. Environment Canada deployed several moorings to collect physical data in collaboration with this program, while the US Army Corps of Engineers provided continuous dock space for NOAA vessels. In addition, the

project has been offered in-kind support (e.g., historical data, technical assistance, vessel support) from all of the state and provincial fishery management agencies on the lake, including the Ohio Department of Natural Resources, the New York State Department of Environmental Conservation, the Michigan Department of Natural Resources, the Pennsylvania Fish and Boat Commission, and the Ontario Ministry of Natural Resources.

For more information about the IFYLE program please visit:

http://www.glerl.noaa.gov/ifyle

Dr. Stuart Ludsin Phone: 734-741-2355 Stuart.Ludsin@noaa.gov Dr. Stephen Brandt Phone: 734-741-2244 Stephen.B.Brandt@noaa.gov